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The Lindemann melting rule is used to eliminate the elastic constant from the thermal conductivity 
formula proposed by Lawson. The thermal conductivit is thus obtained as a function of densit atomic 
weight, and meltiniY temperature. The introduction of a ependence on on c aracter allows a major 
fractIon of the ava able high-temperature thermal conductivity data to be reproduced within a factor of 
two. A dependence of thermal conductivity on mass ratio of the type found theoretically by Blackman for 
diatomic crystals is observed. 

1. INTRODUCTION 

I N insulators, in which the thermal current is carried 
by phonons, the thermal conductivity, X, is given 

by the formula l X=iCvl, where C is the specific heat 
per unit volume, v is an average velocity of sound, and 
l is an average phonon mean free path. At high temper­
atures in sufficiently pure and perfect crystals l is 
determined by phonon-phonon scattering. At temper­
atures high enough so that the lattice oscillators are 
classically excited, C has the Dulong and Petit value and 
l is proportional to the reciprocal of the temperature. 
The thermal conductivity under these last circum­
stances is referred to as the high-temperature thermal 
conductivity. . 

Various expressions which relate l or X in the high­
temperature range to other mechanical properties (e.g., 
thermal expansion coefficient, Debye temperature) of 
the crystal have been proposed.2- s Unfortunately all of 
these expressions involve properties which are known 
only for rather intensively investigated crystals. 

For practically all materials which are intentionally 
prepared the density, atomic weights, and melting 
temperature are known. However, certain rules of a 
semi empirical nature connect the melting temperature 
with other physical properties of a crysta1.7 •8 In this 
note such rules will be used to eliminate the less readily 
available parameters from the thermal conductivity 
formulas and to replace them with T m, the melting 
temperature. The resulting expression will be compared 
with experimental data given in the literature. 

A correlation of lattice thermal conductivity with 
melting temperature has been suggested previously: 
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a G. Leibfried and E. Schl5mann, Nachr. Akad. Wiss. Giittingen, 

Math-physik Kl lla, 7 (1954). 
4 J. S. Dugdale and D. K. C. MacDonald, Phys. Rev. 98, 1751 

(1955). 
& A. W. Lawson, J. Phys. Chern. Solids 3, 154 (1957). 
8 T. A. Kontorova, J. Tech. Phys. U.S.S.R. 26, 2021 (1956) 

[translation: Soviet Phys. (Tech. Phys.) 1, 1959 (1957)J. 
7 F. A. Lindemann, Physik Z. 11, 609 (1910). 
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Eucken9 concluded on empirical grounds that many 
substances have the same thermal conductivity at the 
melting point. Such a rule appears to work fairly well 
for substances with low melting points, but is not valid 
for crystals melting above about 500oK. 

II. DERIVATION OF THE FORMULA FOR ')..T 

It has been shown by Lawson6 and by White and 
Woodslo that the various thermal conductivity formulas 
are essentially equivalent in the high-temperature 
region. The form proposed by Lawson6 is most con­
venient for the present purpose. It is 

(1) 

where a is the interatomic distance, "( is the Grtineisen 
constant, X is the compressibility, and p is the density. 
The dependence of all of these quantities on the 
temperature is very weak, and XT is constant to a good 
approximation at high temperatures. 

The Lindemann melting rule7 can be used to eliminate 
X from (1). The Lindemann rule is based on the as­
sumption that melting takes place when the .amplitude 
of thermal vibration of the atoms reaches some fixed 
fraction, e, which is the same for all materials, of the 
interatomic distance. It can be put into the form 

(2) 

where V is the volume per gram atom. Substituting (2) 
into (1) and setting a=(V/No)l/3 and V=A/p, where 
A is the mean atomic weight and No is Avogadro's 
number, gives 

XT= [R3/2/3,,(2e3N ol/3JT ",3/2p2/3/ A 716 (3) 

=BQ, (4) 

where B represents the bracketed factor in (3) and 
Q=.T m3/2p2/3/A7/S. Now most of the variations of 
physical properties among different materials has been 
combined into the second factor of Eq. (3), and it 
might be hoped that Eq. (4) with B regarded as 
constant would be a useful formula for the approximate 

D A. Eucken, Ann. Physik 34, 35, 185 (1911). 
10 G. K. White and S. B. Woods, Phil. Mag. 3, 785 (1958). 
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prediction of lattice thermal conductivities. In the 
subsequent text the evaluation of this idea will be 
undertaken, and references to Eq. (4) should be under­
stood to mean Eq. (4) with B regarded as a constant. 

III. EVALUATION OF THE FORMULA 

For the purpose of evaluating Eq. (4), values of AT 
and of T m 3/2p2/3j A 7/S are tabulated in Table I. An 
attempt has been made to include in Table I all of the 
available thermal conductivity data for which a 
temperature range has been observed in which A varies, 
at least approximately, as T-l and in which it appears 
that material of reasonably high structural perfection 
has been used. In some of these cases the measurements 
.have been made at temperatures considerably less than 
the Debye temperature, and the assumption of classical 
excitation of the "optical" modes of vibration does not 
seem plausible, in spite of the T-l dependence. However, 
the de-excitation of the optical modes will probably not 
make a difference of a factor greater than two in the 
thermal conductivity, and it will be seen that such a 
factor does not have an important effect on the con­
siderations to be presented. 

The data of Table I has been used to construct Fig. 1. 
It is seen that Eq. (4) with B regarded as constant is 
capable of defining the thermal conductivity to within 
about one order of magnitude. Since the independent 
variable in (4) varies over four orders of magnitude, 
some significance can be attached to Eq. (4). 

In calculating it for crystals containing a molecular 
unit, e.g., (C03), (CsHs), the parameter A was taken:to 
be the molecular mass. This amounts to ignoring the 
internal degrees of freedom of the molecule. The 
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FIG. 1. The high-temperature thermal conductivity data of 
Table I plotted in the form suggested by Eq. (4). In the abscissa 
T m is express~d in Kelvin degrees, p in g/cma, and A in gram~ 
per mole. A IS the average atomic weight. The line indicates, 
proportionality between AT and n. 

TABLE I. A collection of high-temperature thermal conductivity 
data, taken from temperature ranges III which X IS approxlID;itely 

---prOportional to 11: 

AT n Mass 
Material (watts/cm) (cgs units) Bonding- · ... ratio 

C(diamond) 1700b 31000 cv 
Si 440e 2500 cv 
Ge 180e 1000 cv 
Sb 28d 370 cv 
Bi 16d,· 110 cv 
Te 101 230 cv 
Se 5g 190 cv 
Kr 0.27h 14.7 vW 
A 0.25h 14.4 vW 
Ne 0.075h 5.2 vW 
BeO 400; 14000 cv 1.78 
MgO 160i 11900 1.52 
AbOa 75i 8100 1.69 
InP 210k 930 cv 3.7 
GaAs 1501 1200 cv 1.07 
InAs 651,m 650 cv ·1.53 
InSb 4Om• n 280 cv 1.06 
PbTe 400 430 cvP 1.62 
Si02 35q 4050 cv 1.75 
Ti02 35i 6000 3.0 
BaF2 33q 1500 7.2 
KCI 40' 730 1.10 
NaF 28q 2500 i 1.21 
Mg2Sn 23" 730 cv 4.9 
NaCI 19q 1140 1.54 
CaF2 15i 3160 2.11 
Ca(COa) 12t 1240u 1.50u 

KT 8.4q 390 i 3.2 
(H2O) 6v 150w vW 
Bi2Tea 5x 260 cv 1.63 
AgBr 2.8Y 320 i 1.35 
(CO2) 0.8z 50w vW 
(CsHs) 0.7z ; •• 28w . vW 
(N2O) 0.4'· 36w vW 

a cv: covalent; i: ionic; vW: van der Waals or molecular bonding, The 
classification according to bonding type is based on structural considerations 
as described by F . Seitz, The Modern Theory 0/ Solids (McGraw-Hill Book 
Company, New York, 1940), Chap. I; and A. F . Wells, Structural I norganic 
Chemistry (Oxford University Press, New York, 1945). 

b Berman, Simon, and Ziman. Proe. Roy. Soc. (London) A220, 171 
(1953). 

c Carruthers. Geballe, Rosenberg, and Ziman, Proe. Roy. Soc. (London) 
A238, 502 (1957); G. K . White and S. B. Woods, Phys. Rev. 103, 569 
(1956) . 

d G. K. White and S. B. Woods, Low-Temperature Physics and Chemistry 
(University of Wisconsin, Madison, 1958) , p . 362. 

'G. K . White and S. B. Woods, Can. J. Phys. 33, 58 (1955). 
f Fischer, White, and Woods, Phys. Rev. 106, 480 (1957). 
g White, Woods, and Elford, Phys. Rev. 112, 111 (1958). 
h G. K. White and S. B. Woods, Phil. Mag. 3, 785 (1958). 
; D. A . Ditmars and D. C. Ginnings, J. Research Nat!. Bur. Standards 

59,93 (1957). 
iF. R. Charvat and W. D. Kingery, J . Am. Ceram. Soc. 40, 306 (1957) . 
k H. Weiss, Vortrag auf der Physikertagung in Essen, October 3-7, 1958 

(unpublished) . 
1 E. D . Wilson (private communication). 
m Bowers, Ure, Bauerle, and Cornish (to be published). 
n A. Stuckes, Phys. Rev. 107,427 (1957). 
o A. F. J offe, Semiconductor Thermoelements and Thermoelectric Cooling 

(Infosearch, London, 1957), p. 66. 
P Although substances crystallizing in the NaCI structure are gener.a lly 

to be regarded as ionic, the high electrical conductivity of PbTe indicates 
that this is not the case here. 

q Data from American Institute 0/ Physics Handbook (McGraw-H ill 
Book Company, New York, 1957). 

'R. Berman and E. Foster, Proc. Roy. Soc. (London) A237, 344 (1956) . 
'G. Busch and M. Schneider, Physica 20, 1084 (1954). 
t A. Eucken, Ann. Physik 34, 185 (1911) . 
u Calculated regarding (CO,) as an atomic entity. 
v M. Jakob and S. Erk, Z. ges. Kalte-Ind 35, 125 (1928); 36, 229 (1929). 

R . Powell, Advances in Physics, edited by N. F. Mott (Taylor and Francis, 
Ltd., London, 1958), Vol. 7, p. 276. 

w Calculated using the weight of the molecule for A. 
x C. B. Satterthwaite and R. W. Ure, Phys. Rev. 108, 1164 (1957); 

H. J. Goldsmid, Proc. Phys. Soc. (London) B69, 203 (1956). 
Y T . E. Pochapsky, J . Chern. Phys. 21, 1539 (19531. 
'A. Eucken, Lehrbuch der chemisch", Physik (Akademische Verlags­

gesellschaft, Leipzig, 1949), p. 753. 
.a- jI.. Eucken and E. Schroeder, Ann. Physik 36, 609 (1939). 
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FIG. 2. The high-temperature thermal conductivity data plotted 
in a form similar to that of Fig. 1 for the ionic and van der Waals 
crystals. 

justification for this is mainly empirical: the use of the 
molecular mass fits the molecular crystals into the 
present scheme in the most satisfactory way. However, 
it is also true that in a case for which a contribution to 
the thermal conductivity from internal degrees of 
freedom has definitely been observed, the temperature 
dependence of A is not r-1, but is more nearly A=con­
stant.n 

There are some general features of Fig. 1 which are 
worth noting: (1) Eq. (4) holds quite accurately for 
some sets of very similar substances, namely: neon, 
argon, krypton, and silicon, germanium, GaAs, InSb, 
lnAs j (2) the covalently bonded solids tend to lie above 
the ionic and van der Waals solids for a given value of 
n j (3) the elements tend to have higher values of AT 
than compounds with the same value of nj (4) in the 
units of Table I, B=0.03, which is about the order of 
magnitude to be expected from Eq. (3). 
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FIG. 3. The high-temperature thermal conductivity data plotted 
in a form similar to that of Fig. 1 for the covalent crystals. 

II A. Eucken and E. Schroeder, Ann. Physik 36, 609 (1939). 

The suggestion provided by observation (2) is 
examined in Figs. 2 and 3, in which the points derived 
from the covalent and the ionic and van der Waals 
solids are plotted separately. The division of the solids 
into types is as in Table 1. The lines of Figs. 2 and 3 
constitute a good representation of the data j two thirds 
of the points fall within a factor of two of the line to 
which they are assigned by the structural criterion. 
Many of the large deviations are cases in which a real 
question could be raised about the bonding classifi­
cation, e.g., Se and Te, in which the bonding between 
chains is certainly not covalent. The value of B for the 
covalent line is 0.13, for the ionic-van der Waals line 
it is 0.015. 

IV. THE MASS RATIO EFFECT 

Observation (3) of the preceding section is a result 
first appreciated by Eucken and Kuhn,12 who noted 
that in the alkali halides the thermal conductivity tends 
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FIG. 4. The deviations of the points from the lines of Figs. 2 
and 3, AT/(AT) •• lc, plotted against the ratio (heavy atomic 
weight/light atomic weight) for the diatomic crystals. 

to be highest for those crystals in which the anion and 
cation masses are most nearly the same. The theoretical 
explanation of the effect was given by Blackman.13 

Blackman considered the case of a linear chain of 
atoms. If all of the atoms of the chain are identical 
there is no thermal resistance in the linear case, as 
shown by Peierls.14 The reason is that the conservation 
laws for energy and for crystal momentum have only 
trivial simultaneous solutions for the linear chain. 
Blackman showed, however, that if the lattice is 
diatomic the additional dispersion introduced by the 
splitting of the vibrational spectrum into two branches 
allows nontrivial solutions to be found. Thus the 
diatomic linear chain has a nonvanishing thermal 
resistance, which depends on the mass ratio of the 
atoms, increasing as the ratio is increased from one. 

In addition, however, Blackman showed that this 
thermal resistance persists only up to mass ratios of 

12 A. Eucken and E. Kuhn, Z. physik Chern. (Frankfurt) 134, 
193 (1928). 

13 M. Blackman, Phil. Mag. 19, 989 (1935). 
14 R. Peierls, Ann. Physik 3, 1055 (1929). 
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about three. If the mass ratio becomes larger than 
three, the separation of the acoustical and optical 
branches of the vibrational spectrum becomes so great 
that interactions involving phonons in both branches 
become impossible. Since these are the interactions 
which produce the thermal resistance, the resistance 
then vanishes. 

Although Blackman's calculations applied only to 
the linear chain, he believed that a similar effect should 
appear in the three-dimensional case, superimposed on 
the ordinary three-dimensional resistance.14 

In order to see th.e relationship of Blackman's result 
to' the present analysis of thermal conductivity data, 
it will be assumed in this section that the procedure of 
the preceding section has been successful in normalizing 
out of the thermal conductivity most of the variation 
from material to material which is due to variation of 
the average mass, the interatomic forces, and the 
crystal structure. The remaining variation can be 
studied by calculating the ratio of the measured AT to 
that predicted by the straight lines of Figs. 2 and 3, 
hereafter denoted by (AT) calc' 

An attempt is made in Fig. 4 to attribute this 
remaining variation to the mass ratio effect. In Fig. 4 
values of AT / (AT) calc are plotted against the ratio 
(heavy atomic weight/ light atomic weight), column 
five of Table I, for the diatomic crystals. Although the 
points for high mass ratios are rather sparse, the 
trend can be recognized. For mass ratios from one to 
three, the ratio AT / (AT) calc decreases with increasing 
mass ratio. However, at a mass ratio of about three 
there 'is a discontinuity at which the value of AT / (AT)calc 
increases to the value which characterizes the com­
pounds with mass ratio near unity. The disappearance 
of the Blackman-type scattering does not take place 
sharply at mass ratio three, but this is not surprising 
in view of the simplicity of Blackman's model. 

V. DISCUSSION 

The value of the present correlation, as compared to 
previous ones dealing with the same subject, is that it 
associates the thermal conductivity with more easily 
measurable, and hence more frequently available, 
parameters. The calculation of the abscissa in Fig. 1 
requires only a knowledge of chemical formula, density, 
and melting temperature. The use of the plots of Figs. 
2 and 3 requires, in addition some understanding of 
the crystal structure. 

In some cases, notably that of silicon and germanium, 

Eq. (4) predicts the relationship of the thermal conduc­
tivities of the solids in question with greater accuracy 
than the Lindemann rule gives the relationship of their 
melting temperatures. The derivation of Eq. (4) given 
in Sec. II should therefore be regarded as suggestive 
rather than quantitative. In this connection it should 
be pointed out that a result similar to Eq. (4) can be 
obtained using the semiempirical relationships in 
different ways j for example, one might substitute the 
relationship of Zwikker, 8 aT m = constant, into the 
Dugdale and MacDonald4 formula for 1, l=a/a"{T, 
where a is the thermal expansion coefficient. 

The physical essence of the Eqs. (3) and (4) is that 
the melting temperature is used as a measure of the 
force constant of the crystals and it is assumed that the 
anharmonicity (in a dimensionless sense) is the same 
for all materials. Reasons why the covalent crystals do 
not fall into the pattern of the ionic and van der Waals 
crystals are not hard to find. Firstly, the Griineisen 
number is generally smaller for covalent materials than 
for other types', being only one or less for the former. 
Secondly, the melting phenomenon is different for the 
covalent materials, in that they usually melt with a 
contraction in volume to form a metallic liquid, whereas 
there is little change in structure or bonding involved 
in the melting of the other crystals. 

In all of the preceding discussion the anisotropy of 
the thermal conductivity of the noncubic substances 
has been ignored. This is principally because the simple 
semiempirical ideas used provided no way of taking the 
anisotropy into account. No improvement in the final 
correlation is to be expected from an inclusion of the 
effects of anisotropy, however, as, for most of the 
anisotropic substances of Table I the anisotropy of the 
thermal conductivity is not known, and in the remaining 
cases the anisotropy is usually less than a factor of twO.15 

A final point worthy of attention is the validity of the 
frequently used assumption that thermal conductivity 
is a decreasing function of atomic weight. Although A 
appears in the denominator of Eq. (3), and the state­
ment appears to represent a trend in the covalently 
bonded solids, it is by no means universally true. The 
outstanding example here is found among the noble . 
gases, where neon has the low:est atomic weight and 
the lowest thermal conductivity. The highest and lowest 
values of AT are represented by diamond and neon, 
respectively, the two elements of lowest atomic weight 
which are included. 

16 W. A,. Wooster, Z. Krist. 95, 138 (1936). 
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